Inkjet Technology & Decorative Surfaces

Debbie Thorp, Business Development Director
Global Inkjet Systems Ltd

TCM Decorative Surfaces Conference
December 2016
GIS – What We Do

- GIS products enable system builders to reduce development time and get products to market faster
- We provide powerful, flexible & adaptable integration tools to suit your system and application needs
Agenda

• **Printheads, inks & software enable applications**
 • Overview of latest industrial inkjet printheads
 • Trends in drop size, resolution & speed
 • Software innovations

• **Inkjet adoption in decorative surface applications**
 • Just a few system examples
 • Tile
 • Textile
 • Flooring
 • Laminate
 • Wallpaper/Wallcoverings
<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Type</th>
<th>Native Resolution (dpi)</th>
<th>Drop size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epson</td>
<td>TFP</td>
<td>25.4 mm piezo</td>
<td>720</td>
<td>1.5-32.5 pl</td>
</tr>
<tr>
<td>PrecisionCore</td>
<td>MicroTFP</td>
<td>33.8 mm piezo</td>
<td>600</td>
<td>1.5-32.5 pl</td>
</tr>
<tr>
<td>Fujifilm</td>
<td>StarFire Series</td>
<td>64.96 mm piezo</td>
<td>400</td>
<td>12/30/65 pl</td>
</tr>
<tr>
<td></td>
<td>Samba G3L</td>
<td>43 mm scalable piezo</td>
<td>1200</td>
<td>2 pl</td>
</tr>
<tr>
<td>HP</td>
<td>TU</td>
<td>108 mm thermal</td>
<td>1200</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>HDNA</td>
<td>2400</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Kodak</td>
<td>Stream</td>
<td>108 mm continuous</td>
<td>600</td>
<td>2.5 pl & 9 pl</td>
</tr>
<tr>
<td></td>
<td>Ultrastream</td>
<td></td>
<td>600 x 1800</td>
<td>3.75 pl</td>
</tr>
<tr>
<td>Konica Minolta</td>
<td>KM1800i</td>
<td>75.5 mm piezo</td>
<td>600</td>
<td>3.5 pl</td>
</tr>
<tr>
<td></td>
<td>ME130H</td>
<td>21.65 mm piezo</td>
<td>1200</td>
<td>3 pl</td>
</tr>
<tr>
<td>Kyocera</td>
<td>KJ4A-RH</td>
<td>108 mm piezo</td>
<td>600</td>
<td>3 pl</td>
</tr>
<tr>
<td></td>
<td>KJ4B-YH</td>
<td>108 mm piezo</td>
<td>600</td>
<td>5 pl</td>
</tr>
<tr>
<td></td>
<td>KJ4B-Z</td>
<td>112 mm piezo</td>
<td>1200</td>
<td>2 pl</td>
</tr>
<tr>
<td>Memjet</td>
<td>Pagewide</td>
<td>221 mm piezo</td>
<td>1600</td>
<td>1 pl</td>
</tr>
<tr>
<td>Panasonic</td>
<td>UH-HA800</td>
<td>56.3 mm piezo</td>
<td>360</td>
<td>3-30 pl</td>
</tr>
<tr>
<td>Ricoh</td>
<td>MH5440</td>
<td>54.1 mm piezo</td>
<td>600</td>
<td>7-35 pl</td>
</tr>
<tr>
<td></td>
<td>MH5220</td>
<td>54.1 mm piezo</td>
<td>600</td>
<td>2.5 pl</td>
</tr>
<tr>
<td>Seiko SII</td>
<td>Printek 508</td>
<td>72 mm piezo</td>
<td>360</td>
<td>12 pl</td>
</tr>
<tr>
<td></td>
<td>RC1536</td>
<td>108 mm piezo</td>
<td>360</td>
<td>13-100 pl</td>
</tr>
<tr>
<td>Toshiba Tec</td>
<td>CF1ou</td>
<td>53.7 mm piezo</td>
<td>300</td>
<td>6-42 pl</td>
</tr>
<tr>
<td></td>
<td>CF3</td>
<td>53.7 mm piezo</td>
<td>600</td>
<td>(3.5 pl)?</td>
</tr>
<tr>
<td>Xaar</td>
<td>1003</td>
<td>70.5 mm piezo</td>
<td>360</td>
<td>6-42 pl</td>
</tr>
<tr>
<td></td>
<td>5601 3p0</td>
<td>115 mm piezo</td>
<td>1200</td>
<td>3 pl</td>
</tr>
</tbody>
</table>

Table: NOT exhaustive – but representative summary

- **Printhead trends**
 - Smaller drops
 - Higher firing frequencies
 - Higher nozzle density
 - Wider heads
 - Scalable heads
 - Ink recirculation
 - MEMs manufacturing developments
 - Higher quality output
 - Higher speed output
 - High data rates to manage
 - Drop management strategies
 - Small drops/high speed
 - Printhead linearization
 - Nozzle out compensation
 - Registration/substrate handling

TFP = Thin Film Piezo
HDNA = High Definition Nozzle Architecture
Table: Courtesy of Sean Smyth (with additions from GIS)
Piezo Printhead Developments

Some high resolution/small drop printhead examples

<table>
<thead>
<tr>
<th></th>
<th>Kyocera KJ4A-RH</th>
<th>Kyocera KJ4B-YH</th>
<th>Ricoh MH5220</th>
<th>Konica KM1800i</th>
<th>Kyocera KJ4B-Z</th>
<th>Fujifilm Samba G3</th>
<th>Xaar 5601 3p0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nozzles</td>
<td>2656</td>
<td>2656</td>
<td>1280</td>
<td>1776</td>
<td>5120</td>
<td>2048</td>
<td>5601</td>
</tr>
<tr>
<td>Width (mm)</td>
<td>108</td>
<td>108</td>
<td>54</td>
<td>75</td>
<td>112</td>
<td>43</td>
<td>115</td>
</tr>
<tr>
<td>Resolution dpi</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600 (1200 module)</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>Grey levels (non zero)</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Drop size pl</td>
<td>6</td>
<td>6</td>
<td>2.5</td>
<td>3.5</td>
<td><2</td>
<td>2.4</td>
<td>3</td>
</tr>
</tbody>
</table>
Many Challenges…….and Solutions
Nozzle Out Compensation

- **Nozzle sizes are getting smaller**
 - More easily blocked

- **Large print bar arrays**
 - Many more nozzles
 - Higher probability of issues

Strategy 1: Double Up - Redundancy
- Add second row of printheads per colour so when one nozzle fails another can be used
 - Expensive

Strategy 2: Hide the problem
- Identify where a nozzle is faulty and spread the jetting responsibility to neighbouring nozzles and/or colours
 - Nozzle check pattern before print job
 - Inline with vision system

4 Level CMYK
Magenta nozzle out on line 511
Nozzle Out Compensation

• Many different strategies to share data between nozzles
 • Image processing technology
 • Error diffusion screening & contone/grey level data modification
 • GIS believes most effective in contone data
 • Hide error in same colour plane to neighbouring nozzles
 • Hide error in other inks - in multi-ink backgrounds
 • If Cyan nozzle fails - could add a little black to hide white space
 • Works best in mid and light mid tones
 • Helps disguise or make the missing nozzle less visible – less white space
 • Clusters of nozzles much more difficult to hide than individual or isolated nozzles
 • Substrate plays a part
 • Technology works best where there is some dot gain
 • Numerous patents exist
Printhead Linearization

• Small amount of non-linearity in their drop volume across the length of head creates challenges
 • Stitching printheads without visible joins
 • Printing large areas of solids/flat colours

• Causes of drop volume inconsistency
 • Printhead manufacturing issue
 • Ejection of drops may not be constant along the piezo
 • Ink system
 • Temperature variation can affect ink viscosity and therefore drop volume
 • Piezo activity
 • Heavy use of some sections of printhead can result in areas of warming and changes in volume
 • Electronics
 • Damaged or degraded electronics may affect drop volume
 • Printhead position
 • System architecture may require heads to be angled creating slight pressure gradient which may affect drop volume
Printhead Linearization

• **Possible solutions:**
 • Electrical per nozzle trimming
 • ASIC trimming
 • Bank trimming
 • Screened (error diffusion) data modification
 • Contone data modification

Linearized printhead
Inkjet Presses Today

- 4,000 – 20,000 nozzles
- Narrow width
- 300 - 600dpi native
- 10 – 100m pixels/sec

- 100,000 nozzles
- Medium width
- Up to 600dpi native
- 100m – 1bn pixels/sec

- >500,000 nozzles
- Wide width >1.5m
- 1200dpi native
- ~18 bn pixels/sec

System Size, Resolution, Data Rate and Productivity (Uptime)
Ceramic Tiles

System Ceramics – Diversa

Launched Tecnargilla 2014

Fujifilm StarFire & Polaris heads

Up to 70m/min
Up to 16 heads per bar
Potentially 100’s heads per system
- Glazes
- Decoration
- Gloss effects
- Matt effects
- Metallic effects

Glaze x 2 Decoration & Effects x 6 Glaze x 2
SPG Prints – Pike

Launched ITMA 2015

Fujifilm Samba G3L printheads

1200dpi x 1200dpi
1.85m wide
Up to 40m/min
6-9 print stations
43 printheads per bar
2-10pl drop size
Barberan (E)

• Design & manufacture high precision machines for doors, boards, furniture, flooring, profiles, drawer sides, marble, stone, glass etc.

• **Jetmaster 840 - 105 – 1260**
 • 210mm to 1890mm
 • CMYK + LC + LM or O + V
 • KM printheads
 • UV inks

from roll to roll
for PVC panels
up to 630 mm
panels up to 1890 mm
Cefla Finishing (I)

• Acquired >60% Jet-Set(I)
 • Pixart Plot
 • Pixart Single Pass
 • Xaar 1003
 • UV inks
Hymmen (D)

• Technology for large volume production of board materials – surface finishing of board (MDF etc.) or roll materials
• Digital printing lines since 2008 – series of Jupiter (JPT) systems

• **JPT W 1400 for laminate**
 - 25-50m/min
 - 2.17mm wide
 - CMYK
 - UV LED inks
 - Xaar 1003 printheads
 - 45gsm paper for dry pressing process

• **JPT WS 230/550 for edge banding**
 - 10-50m/min
 - Up to 540mm wide
 - CMYK (Light colours possible)
 - UV LED inks
 - Xaar 1003 printheads
 - ABS, PVC or PP

Wemhöner Surface Technologies (D)

- Produces machines and systems for upgrading of wood based panels
 - Product range includes digital and direct printing systems, lacquering lines, lightweight panel systems, throughfeed press lines, special plants and special press lines

- **MasterDigital - part of MasterLine range**
 - Surface finishing of MDF, particle board or other flat materials
 - Décor paper
 - Multipass XY roll to roll/flatbed
 - 600dpi
 - 24 heads per system typically
 - Up to 6 colours – CMYK ++
 - Have own special red for furniture
 - Up to 790m2/hr

• **KBA RotaJet168**
 • Printing décor paper
 • Up to 150m/min
 • 1.68m wide
 • 600dpi
 • CMYK
 • Water based inks
 • Processes 2.2 terabyte/sec
Palis & Schattdecor (D)

• Schattdecor has had inkjet strategy since 2009
• Collaboration 2013 between Schattdecor, Padaluma (Palis Digital) & Rotodecor
 • Joint development of Palis 2250 for décor paper printing
 • 2250mm width
 • 75-150m/min
 • Designed to print with pigments identical to those used in rotogravure printing
Zeescape (AUS)

• Direct to wall printer using inkjet
 • CMYK
 • Portable system
 • Residential, commercial, hotels etc
 • Franchise business
Summary

- **Inkjet entering more industrial/manufacturing/volume production applications**
 - Typically not a direct replacement for analog technologies – but enlarging the application space and creating new markets and new capabilities
 - Large (>1m wide) print bars becoming commonplace
 - Technologies now exist to overcome many application challenges - driving the acceleration of inkjet adoption in production

Formica Envision

North American Plywood

Juicy Walls

Image source: company web sites & InfoTrends
Thank you

Debbie Thorp, Business Development Director
debbie.thorp@globalinkjetsystems.com

Global Inkjet Systems Limited
The Jeffreys Building
Cowley Road
Cambridge CB4 0DS

Tel: +44 (0)1223 733 733
Web: www.globalinkjetsystems.com

Technical support offices in UK, Japan and China