Inkjet Surface Decoration - Market Overview & Challenges

Debbie Thorp, Business Development Director

IMI Digital Printing Presses Conference
April 2014
Global Inkjet Systems

• Leading supplier of software, drivers, firmware & electronics for industrial inkjet printheads to OEMs, machine builders & integrators
 • Specialise in challenging/complex applications
 • Particular expertise in large single pass systems
 • Experienced in handling high data rates (high speed, high resolution, large numbers of printheads)
 • Significant presence in ceramic tile printing, security printing, labels, packaging, textiles, product decoration, demanding variable data applications, 3D printing, coatings and materials deposition
Inkjet Surface Decoration - Agenda

• What is inkjet trying to replace – or complement?
• Understanding surfaces
 • Flat, curved, cylindrical, complex
• (Some of the) Challenges for inkjet
• Who’s doing what in the market
 • A review of products at recent trade shows
Inkjet Development in Direct Product Decoration

- Flat & Semi-Flat
- Tubes/Cylinders
- Cones
- Tubs
Decoration of Flat & Semi-Flat Objects – example systems

Mimaki based units

Pad Print Machinery

Cyan Tec

Industrial Inkjet

ITW TransTech
Categories of Shapes

<table>
<thead>
<tr>
<th>Flat</th>
<th>Tube</th>
<th>Cone</th>
<th>Bottle</th>
<th>Sphere</th>
<th>Tub</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Continuity in direction of print**
- “Continuous” shapes – curvature remains constant in direction of print
 - Tube, cone (mixed resolution, but still continuous), bottles, spheres etc
- “Discontinuous” shapes – curvature changes
 - Tub (mixture of flat edges and curved corners)
 - Correction required keeps changing
 - Discontinuity across the printhead – adds considerable complexity
Analogue Direct Product Printing Technologies

- Tubs: ~9 - 12,000 units/hour
- Tubes: ~18,000 units/hour
- Round cups: ~27 - 36,000 units/hour
- PET bottles ~36,000 units/hour
- Cans ~ 108,000 units/hour
 - All productivity numbers are dimension dependent
Unfolding or “Flattening” Shapes

- Allows us to understand the complexities of printing onto that surface
 - Cylinders
 - Slice a cylinder down one side – unfolds/flattens to a simple rectangle
 - Cones
 - Cones unfold into “arced” rectangle
 - Tubs
 - Tubs are combinations of cones and cylinders with discontinuities
 - Bottles & Spheres
 - Bottles & spheres cannot easily be unfolded in their entirety
 - Spheres have always presented a problem
 - Bottles often highly complex
Some of the Challenges for Inkjet

- **UV curable inks dominate today**
 - Colour Gamut
 - Spot/brand colour
 - White
 - Opacity
 - Ink Wetting and Adhesion
 - Surface tension
 - Pre-treatment
 - Post-treatment
 - Curing
 - When? Pinning? Full cure
 - Resistance
 - Sunlight fade
 - Temperature
 - Scratch resistance/image durability
 - Migration
 - Regulatory issues
Some of the Challenges for Inkjet

- **Inkjet printheads**
 - Designed to print onto flat surfaces
 - Throw distance
 - Drops only jet a few millimetres and decelerate quickly
 - Larger drops jet further
 - Smaller drops improve graphical image quality
 - Distance between nozzle banks
 - Time of flight on curved surfaces
 - Jet straightness
 - Printhead dimensions
 - Reaching the nooks & crannies

- **Need to manage physical characteristics of printhead in relation to curved surface**
 - Jet straightness
 - Time of flight
 - Distance between nozzle banks
 - Image compensation – where applicable
Continuous curves – cylinders/tubes and cones
Tubes/Cylinders

- A “flat” image wrapped around a cylinder
 - No image compensation required
- Physical characteristics of the printhead
 - Geometry
 - Drop ejection
 - Time of flight
Printhead Orientation

- **Orientation of the object under the printhead to get best possible print**

- **Three key issues**
 - Symmetry
 - Nozzle bank width
 - The narrower the better
 - Number of columns
 - Different times of flights
 - More complex

- **Printhead orientation**
 - Printing downwards
 - Printing sideways (printhead dependent)
Printhead Geometry

Single column
Easiest, but lower resolution

Dual column shared wall
Symmetrical, narrow is better

Multiple columns
Faster, complex but some printheads have independent fire control, which helps
Cones

Continuous shape, but more complicated than a tube

- Nozzle alignment issues as before
- Resolution changes when printing onto curved surfaces
- Need to compensate for density increase
- Screening more complex
Printing with No Correction

- Nozzle misalignment
- Increasing density
- Time of flight differences
- Screening issue - changes in dot gain

High Resolution

Low Resolution
• Density and screener correction software
Printing with Correction

- Correct nozzle alignment
- Density correction
- No dot gain issues
- No screening artefacts
- Image distortion – typically managed in original artwork

Curved surface compensation
Printing Onto Bottles

- Huge range of shapes of bottles
- Labels/decoration typically on the tube section
- Printing more of the bottle presents new challenges as often different corrections required
 - Combination of tubes & cones
 - Some have discontinuous shapes e.g. a tub-shaped base
 - Plus ridges etc
Printing onto Complex Bottles

• Multiple angles may be required to print the entire surface
 • Neck ridges
 • Narrowing of middle section
 • Some areas almost impossible to reach

• Simplistic approach shown here
 • Print quality will vary dramatically – needs large drops for the throw distance
Discontinuous curves - tubs
Discontinuous Shapes

- Mixture of flat and curved surfaces
- The required corrections change during the print (often from pixel to pixel)
- GIS multi-dimensional nozzle, density and screener correction technology that can be adjusted to each surface type and associated application process
Products at Recent Shows
Drinktec: K 2013: SGIA: Label Expo: InPrint
Non-inkjet decoration systems at recent shows
Non Inkjet – HP Indigo

• White conformable PE
 • Print surface top coated and optimized for HP Indigo presses
Non Inkjet – HP Indigo

- Personalised hats for construction industry
- Pre-distorted images printed onto PET-G sheets
- Vacuum wrapped onto hats
- Artwork takes on correct format
- First introduced in 2011
Non Inkjet - Xeikon

- Xeikon 300 series
- Thermoflex heat transfer system
- Print (mirror image)
- Heat/pressure applicator (3rd party equipment)
- QA-I toner – FDA indirect/direct food contact (conditions apply)
- First introduced 2011
Inkjet - flat & semi-flat systems
Mimaki Print Robo 60

- 2 x UJF-6042 units
- XY printing
- Up to 1800 x 1800dpi
- Jig plate (600mm x 420mm)
- 20 jig plates auto loading
Durst Rho IP 203 & 507

- “Plastics, membrane switches, instrument panels, dashboards, cover plates (e.g. for washing machines) and small objects for which pad printing is typically used.”
- 1000dpi
- Up to of 8 colours
- Rho IP 203: 210 x 297 mm
- Rho IP 507: 500 x 700 mm
- www.durst.it
Thieme 3000D Series

- KM1024 heads
- 3 heads per colour
- 8 inks CMYK, Lc,Lm,Lk, W plus optional primer, topcoat
- Print sizes
 - Thieme 3020: 750mm x 1,050mm
 - Thieme 3060: 1,550mm x 2,100mm
 - Thieme 3095: 2,000mm x 3,300mm

- www.thieme.eu
Plastic Cap Printing

- **Sacmi Intesa – Colora Cap**
 - Xaar 1001

- **Tampoflex – Big Wheel**
 - Hybrid inkjet & rotary pad print
 - KM1024

- **PPSI – custom built unit pharma**
 - Xaar 1001
Inkjet – cylinder/tub, cone & tub printing systems
• Innovative Digital Systems (IDS)
 • Adaptation of Mimaki system
• INX – Evolve CP100
 • Xaar 1001 printheads
Dubuit 9150

800 pcs/hour (dimension dependent)
 • Diameter: 10 to 100mm
 • Height: 40 to 200mm

Flat or curved surfaces
360dpi greyscale
CMYK + W
Small system footprint

www.dubuit.com
Hinterkopf D240

- Inline inkjet system
- Up to 240 pieces/min (dimension & resolution dependent)
- Up to 1200 dpi
- Precision rotary indexing machine with 16 stations & 32 spindles/holders
- Max. 8 print stations – CMYK+W – plus 2 special inks + lacquer
- Low migration UV inks
- De-dusting; detection; positioning; surface pre-treatment; printing; pinning and separate final drying; checking; removal

- www.hinterkopf.de
Kammann K1 CNC-2250

- Hybrid screen and inkjet
- CMYK – UV inks
- Xaar 1001 printheads
- 2 x screen stations
 - Pre-coat white with screen
 - Spot colours with screen
- www.kammann.de
KHS Innoprint

- CMYK+W
- Low migration/food grade UV inks
- Untreated PET bottles
- Optical resolutions of 1080 x 1080 dpi
- PET bottle types ranging in size from 0.33 to 1.5 litres
- Container diameters can vary between 40 and 120 mm
- Capacity up to 36,000 PET bottles per hour
- Each colour carousel has 12 printing units
- Modular configuration
- www.khs.com
KHS Innoprint

- Bottles enter via air conveyor
- Sterile air or nitrogen pumped in for stability
- Clamping units (pucks) transport bottles to 5 colour carousels – lock in place magnetically
- Bottle mouth sealed during printing, preventing any contamination
- Each colour carousel applies one UV ink WCMYK – then UV LED curing
Krones Decotype

- Modular, compact design
- PET, PP - glass in future
- Cylindrical and odd-shaped bottles
- UV ink – up to 6 colours

www.krones.com

<table>
<thead>
<tr>
<th>Output (cph)</th>
<th>Number of colours</th>
<th>Printing level (mm)</th>
<th>Number of print heads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specially shaped containers</td>
<td>up to 6</td>
<td>up to 70</td>
<td>up to 6</td>
</tr>
<tr>
<td>up to 12,000</td>
<td>up to 6</td>
<td>up to 210</td>
<td>up to 18</td>
</tr>
<tr>
<td>up to 24,000</td>
<td>up to 6</td>
<td>up to 70</td>
<td>up to 12</td>
</tr>
<tr>
<td>Cylindrical containers</td>
<td>up to 6</td>
<td>up to 70</td>
<td>up to 6</td>
</tr>
<tr>
<td>up to 7,800</td>
<td>up to 6</td>
<td>up to 210</td>
<td>up to 18</td>
</tr>
<tr>
<td>up to 15,600</td>
<td>up to 6</td>
<td>up to 70</td>
<td>up to 12</td>
</tr>
</tbody>
</table>

*) all around print, diameter = 60 mm

Higher system performance will be ensured in future by the development of additional design sizes.
Krones Decotype
Polytype RDA 24-125 Hybrid

• Tubes can be decorated by both ink jet and/or dry-offset and followed by over-varnishing

• Combines “the positive features of both printing processes-high print quality for images with digital printing and small and sharp lettering and excellent full colours with dry-offset printing”

• 6 ink jet and 8 dry-offset stations
Polytype Digicup

• Standard cup in-feed and pre-treating stations
• Decoration with low migration process inks, including the possibility for a 4 colour bottom decoration
• UV-dryer for scratch resistant surface - then restacked on restacker
• Various shapes can be handled and decorated
 • Round, oval cups and multi-sided cups (tubs)
• 40 to 120 cups/min
• First machines installed and in production
• www.polytype.com
Till SmartPrint

- Modular SmartPrint range of machines
- 10 to 600 units/min
- UV inks and Xaar 1001 printheads
- Glass, PET and metal
- Customisable web shop
- Test systems now installed at Coca Cola, Anheuser Busch and Heineken

www.till-tech.com
Robot Printing

Industrial Inkjet – InPrint demonstration

Xennia – Xanadu system
Summary – Inkjet Meeting Market Demands

• **Market enablers becoming available**
 • Inks
 • Drop size/ resolution/ print quality
 • Low migration/low odour
 • Adhesion
 • Recyclability
 • Inkjet reliability
 • Non-contact / digital
 • New opportunities
 • New processes
 • Curved surface compensation
 • Software tools
 • Supporting technologies
 • Pre-treatment/ curing/ post-treatment

• **Production capability becoming feasible for some markets**
 • Matching (or close to) matching analogue throughput for some products
 • PET bottles
 • Tubes/cylinders
Thank you – Any Questions?

Nick Geddes, CEO
nick.geddes@globalinkjetsystems.com
Debbie Thorp, Business Development Director
debbie.thorp@globalinkjetsystems.com

Global Inkjet Systems Limited
The Jeffreys Building
Cowley Road
Cambridge CB4 0DS
Tel: +44 (0)1223 733 733
Web: www.globalinkjetsystems.com