Inkjet & Direct Container Printing – Challenges & Successes

Debbie Thorp, Business Development Director

ESMA DCP Conference
November 2015
Global Inkjet Systems

- Electronics, firmware, drivers, RIPs, software utilities, user interfaces and components for ink delivery systems
Agenda

• Understanding shapes
• (Some of the) challenges for inkjet
• Next development - full height printing of cones
• Who’s doing what in the market – the success stories
Unfolding or “Flattening” Shapes

- Allows us to understand the complexities of printing onto that surface
 - Cylinders
 - Slice a cylinder down one side – unfolds/flattens to a simple rectangle
 - Cones
 - Cones unfold into “arced” rectangle
 - Tubs
 - Tubs are combinations of cones and cylinders with discontinuities
Some of the Challenges for Inkjet and DCP

- **Inkjet printheads**
 - Designed to print onto flat surfaces
 - Throw distance
 - Drops only jet a few millimetres and decelerate quickly
 - Larger drops jet further
 - Smaller drops improve graphical image quality
 - Distance between nozzle banks
 - Time of flight on curved surfaces
 - Jet straightness
 - Printhead dimensions
 - Reaching the nooks & crannies

- **Need to manage physical characteristics of printhead in relation to curved surface**
 - Jet straightness
 - Time of flight
 - Distance between nozzle banks
 - Image compensation – where applicable
Printhead Orientation

• **Orientation of the object under the printhead to get best possible print**

• **Three key issues**
 - Symmetry
 - Nozzle bank width
 - The narrower the better
 - Number of columns
 - Different times of flights
 - More complex

• **Printhead orientation**
 - Printing downwards
 - Printing sideways “skyscraper mode” (printhead dependent)
Full Product Height Printing

• **Cylinders/Tubes**
 • Full coverage now well established

• **Cones**
 • Most images are one head height and/or cover only a section of the cone requiring only minor distortion correction
 • Full height printing opens up new markets for full product decoration
Full Product Height Printing - Cones

Continuous shape, but more complicated than a tube

- Nozzle alignment issues (as with tubes)
- Resolution changes when printing onto curved surfaces
- Need to compensate for density increase
- Screening more complex
Full Product Height Printing - Cones

- **Challenges**
 - Mechanical alignment of heads
 - Density & screening correction
 - Jetting angle variations
 - Stitching – additional complexity
 - Software adjustment to support array of multiple printheads

- **Image printed without correction**
 - Nozzle misalignment
 - Time of flight differences
 - Increasing density
 - Screening issue - changes in dot gain

- **Increasing density**
 - High Resolution
 - Low Resolution

- **Printheads**
Full Product Height Printing - Cones

e.g. Xaar 1002 or KM1024 – 2 rows of nozzles

1 Nozzle Bank Correction

Standard nozzle bank correction – applies to any inkjet application

2 Cone to printhead geometry mapping – correcting for curvature of the cone

Opposite distortion required in the data to achieve correct end result when wrapped onto the product
Full Product Height Printing - Cones

3 Density correction and varying resolution screening

Opposite distortion required again for density correction
Screening correction to minimise dot gain issues

4 Printhead alignment and stitching

Stitching more than one head per colour increases complexity
Full Product Height Printing - Cones

- **First step - knowing how to print onto cones**
 - This reverse transform technology can be understood
 - Correct nozzle alignment
 - Density correction
 - No dot gain issues
 - No screening artefacts

- **Second step – automating the process for high speed production**
 - Link it to a RIP (variable data capable if possible)
 - Apply the correction automatically for different images in real time
 - Accelerate the processing to allow maximum variable data throughput

Technology proven - products are now in production
Dubuit 9150

- 800 pcs/hour (dimension dependent)
 - Diameter: 10 to 100mm
 - Height: 40 to 200mm
- Flat or curved surfaces
- 360dpi greyscale
- CMYK + W
- Small system footprint
- www.dubuit.com
- Concept 972 and 9964
 - Up to 4,000 pcs/hour
 - Hybrid screen/inkjet systems
Hinterkopf D240

- Up to 8 inks
 - CMYK+W plus 2 special inks + lacquer
- Low migration UV inks for plastics
- Up to 1200 dpi
 - 2pt font (positive) or 3pt (negative)
- Up to 240 pieces/min
- Precision rotary indexing machine with 16 stations & 32 spindles/holders
- www.hinterkopf.de
- 1st installation – Ritter GmbH (2nd to be installed)
 - Cartridges
 - Replacing screen & thermo-transfer printing
 - Photorealistic images and variable data
Kammann K15 CNC

- **Inkjet only – W+CMYK**
- **Hybrid - screen and inkjet**
 - 2 x screen stations
 - Pre-coat white with screen
 - Spot colours with screen
- **Printing height up to 200mm**
- **Diameter 120mm, length 350mm**
- **Xaar 1002 printheads**
- www.kammann.de
KHS Innoprint

• CMYK+W - low migration/food grade UV inks
• PET bottle types ranging in size from 0.33 to 1.5 litres
• Container diameters can vary between 40 and 120 mm
• Each colour carousel has 12 printing units
• Modular configuration

• www.khs.com

• 1st installation – Martens Brouwerij
 • PET beer bottles
 • 12,000 bottles/hour
 • Dagschotel brand - in association with Belgian sitcom F.C. De Kampioenen
 • Different actors on each bottle
 • Special smartphone app (www.kampioenenbier.be)
Krones Decotype

- Modular design
- PET, PP - glass in future
- Cylindrical and odd-shaped bottles
- UV ink – up to 6 colours
- www.krones.com
- Oscar dell’Imballagio 2015*

<table>
<thead>
<tr>
<th>Performance Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output (cph)</td>
</tr>
<tr>
<td>Specially shaped containers</td>
</tr>
<tr>
<td>up to 12,000</td>
</tr>
<tr>
<td>up to 24,000</td>
</tr>
<tr>
<td>Cylindrical containers</td>
</tr>
<tr>
<td>up to 7,800</td>
</tr>
<tr>
<td>up to 15,600</td>
</tr>
</tbody>
</table>

 *) all around print, diameter = 60 mm

Higher system performance will be ensured in future by the development of additional design sizes.

*Italian Packaging Institute
Martinenghi – Michelangelo KX48P

- UV curable inks – up to 7
- Diameter range 13.5-66mm
- Length range 50-280mm
- www.martinenghi.com
- 1st installation – ALM, Spain
Polytype RDA 24-165 Hybrid & Digicup

- **Ink jet only and hybrid with dry-offset**
 - Hybrid - 2014 Tube of the Year*
 - All text & Pantone logo colours – dry offset
 - Up to 8 colours
 - Photorealistic image – inkjet
 - Up to 6 colours
- **UV low migration inkjet inks**
- **Tubes/cones/tubs**
- www.wifag-polytype.com

North American Tube Council – Best innovative component or process
Till SmartPrint

- Modular SmartPrint range of machines
 - Sampling system – up to 200 units/hour
 - Batch system – 500-4,800 units/hour
- CMYK UV inks and Xaar 1002 printheads
- Glass, PET and metal
- Test systems installed at Coca Cola, Anheuser Busch and Heineken
- Web2Print online shop option
- www.till-tech.com
Summary – Technology Enablers

- **Inks/printheads**
 - Drop size/ resolution/ print quality
 - Low migration/low odour
 - Adhesion
 - Recyclability
 - Reliability

- **Supporting technologies**
 - Pre-treatment/ curing/ post-treatment

- **New processes – new market opportunities**
 - Software tools – more shapes

- **Synergy of inkjet with analogue print – hybrid devices**

- **Production systems**
 - Meeting industry demands
 - Creating new market opportunities
Thank you – Any Questions?

Nick Geddes, CEO
nick.geddes@globalinkjetsystems.com

Debbie Thorp, Business Development Director
debbie.thorp@globalinkjetsystems.com

Global Inkjet Systems Limited
The Jeffreys Building
Cowley Road
Cambridge CB4 0DS

Tel: +44 (0)1223 733 733
Web: www.globalinkjetsystems.com