Ink Delivery Systems (IDS)
Design Options & Troubleshooting

Debbie Thorp, Business Development Director
Global Inkjet Systems Ltd
October 2016
• GIS products enable system builders to reduce development time and get products to market faster
• We provide powerful, flexible & adaptable integration tools to suit your system and application needs
Agenda

• Basic requirements
• Flow modes
• Heating
• Degassing
• Large print bars
• Typical IDS issues
 • Troubleshooting and solutions
Basic Requirements

• **Maintain head pressure at nozzles within required range**
 • At different flow rates
 • Scanning XY systems – withstand the acceleration/deceleration of printhead carriage

• **Filtration**
 • Minimise chance of particles clogging the nozzles

• **Degas**
 • Stop air bubbles reaching the printhead/nozzles
 • Avoid air pockets in ink system

• **Recirculation**
 • Specific printheads

• **Heat the ink**
 • For correct operating temperature (printhead dependent)

• **Low level ink indicator**
• **Change bulk ink tanks on the fly**
• **Reliable system for production environments**
Flow Modes

1. End Shooter
2. Low Flow
3. Adjustable Flow

Pressure Difference
Height Difference
No Flow/End Shooter

- **Basic characteristics**
 - Air pressure range typically 250-500mm between header tank and nozzle plate
 - In this example, negative pressure P (-350mm) applied to balance the positive head of fluid (300mm) and provide a negative meniscus pressure of -50mm at the nozzle plate
Low Flow/End Shooter

• **Basic characteristics**
 • Height difference between the header tanks
 • Same negative air pressure applied to both tanks
 • System constantly tries to level and creates low flow through the printhead
Controlled/Adjustable Flow

- **Basic characteristics**
 - Two pressure values assigned
 - Printhead manufacturers tend to specify the pressure difference
 - Differential air pressure creates flow through the printhead
 - P_1 and P_2 both adjustable to vary/control the flow rate
Example Printheads

<table>
<thead>
<tr>
<th>Example Printheads</th>
<th>No Flow</th>
<th>Low Flow</th>
<th>Controlled Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fujifilm Samba G3L</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Fujifilm Starfire SG1024</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Fujifilm Sapphire 256</td>
<td>✓</td>
<td>(✓)</td>
<td>✗</td>
</tr>
<tr>
<td>Konica Minolta 1024i</td>
<td>✓</td>
<td>(✓)</td>
<td>✗</td>
</tr>
<tr>
<td>Kyocera KJ4B-QA/YH</td>
<td>✓</td>
<td>(✓)</td>
<td>✗</td>
</tr>
<tr>
<td>Kyocera KJ4A-TA/AA/RH</td>
<td>✓</td>
<td>(✓)</td>
<td>✗</td>
</tr>
<tr>
<td>Ricoh MH5440</td>
<td>✓</td>
<td>(✓)</td>
<td>(✓)</td>
</tr>
<tr>
<td>TTEC CF1/CF3</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Xaar 1003</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Xaar 5601</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>

Key
- ✓ Required
- (✓) Optional
Ink Requirements

<table>
<thead>
<tr>
<th>Ink Type</th>
<th>Typical Ink System Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV</td>
<td>Requires heating (most printheads have heaters and/or use heated mounts)</td>
</tr>
<tr>
<td></td>
<td>Degassing is advantageous i.e. best for high frequency/large number of heads</td>
</tr>
<tr>
<td></td>
<td>- but can make ink over-sensitive to curing</td>
</tr>
<tr>
<td>Aqueous</td>
<td>(Requires) degassing</td>
</tr>
<tr>
<td>Oil based</td>
<td>None special</td>
</tr>
<tr>
<td>Solvent</td>
<td>None special</td>
</tr>
<tr>
<td>White/ Ceramic</td>
<td>Requires special pumps due to abrasive ink pigment and particle settling</td>
</tr>
</tbody>
</table>
| Fluid Deposition/ Functional Fluid/ Ink Development | Requires materials compatibility testing
Typically requires small volumes due to high value of fluid– may affect header tank design/size |
• Ink performance varies with temperature
 • Higher temperature
 • Reduces viscosity
 • Increases evaporation
• Inks have a recommended operating temperature window (consult you ink supplier)
• Temperature most critical at the printhead/jetting

<table>
<thead>
<tr>
<th>Mode of Heat</th>
<th>Comment</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-line Heaters</td>
<td>Only work with recirculating systems</td>
<td>Provide fast and controllable ink heating</td>
<td>Cost</td>
</tr>
<tr>
<td>Heated Header Tanks</td>
<td>Typically used in no flow or low flow systems</td>
<td>Lower cost than in-line heaters</td>
<td>Only suitable for low density printing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Temperature control less accurate</td>
</tr>
<tr>
<td>Heated Head Plates</td>
<td>Can be used with all flow modes</td>
<td>Provides uniform thermal environment</td>
<td>Thermal expansion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduces workload on printhead/ink system heating</td>
<td>Adds cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improving thermal control</td>
<td></td>
</tr>
</tbody>
</table>
Degassing

- **(Required) for aqueous inks**
 - Sometimes not used on small systems to save cost
- **Recommended for some UV inks**
 - Typically on large, high print frequency systems
- **Contactor must be right size for flow rate and compatible with ink**
- **Vacuum must be applied**
 - High vacuum for aqueous ink
 - Lower vacuum for UV ink
 - Risk stripping all oxygen out of the ink and cause curing

Image source: Membrana
Manifold system
- Popular design
- Cost efficient to implement
- Can be prone to air traps
 - Trapped air can sit at top of manifold
- Can be difficult to fill
- Extendable

Custom header tanks
- Header tank acts as manifold
- Valve for each printhead
- Equal flow resistance
- Extendable
Common Issues Attributed to IDS

- Weak Nozzles
- Late or Grouped Jetting
- Misdirected Jets
- Unreliable Jetting
- Process Direction Density Variation
- Cross Process Density Variation
- High Print Speed Variation
- Print Density Uniformity
- Print Density Uniformity
- Printhead Life
- Hard to Prime
- Blocked Nozzles
- Blocked Printheads
- Nozzle Plate
- Air In Printhead
- Ink On Nozzle Plate
- Drop Ejection
- Failing Nozzles During Print
- Weak Jets at Start of Swathe
Common Issues with Alternative Causes

- Waveform / Electronics
- Environmental / Media / Mechanical
- Printhead Lifetime
- Blocked Nozzles
- Blocked Printheads
- Hard to Prime
- Print Density Uniformity
- Process Direction Density Variation
- Cross Process Density Variation
- High Print Speed Variation
- Print Heads
- Misdirected Jets
- Unreliable Jetting
- Late or Grouped Jetting
- Weak Jets at Start of Swathe
- Weak Jet Nozzles
- Falling Nozzles During Print
- Air in Printhead
- Ink On Nozzle Plate
- Hard to Prime
- Printhead
- Ink Delivery System
- Drop Ejection
Typical IDS Issues

• **Trapped air**

 • **Symptoms**

 • Difficult morning start up
 • Ink dripping from nozzle plate, even when pressure set correctly
 • Intermittent printing
 • Heads may print well for short time until air moves into the head
 • Heads may print well for low density images but fail quickly for high density images

• **Solutions**

 • Ink degassing
 • Avoid tubing with uphill path or loops
 • Correct tube size (not too small or too large) – restricted flow can lead to air being sucked into the nozzle as the head fails to pull ink through the system
 • Avoid restrictions in valves & fittings
Typical IDS Issues

• **Poor pressure control**
 • **Symptoms**
 • Ink dripping at the head or air sucking into the head
 • Variations in optical density in the image – volume of ink in each drop is affected
 • **Causes**
 • Vacuum pump on continuously creates loss of pressure
 • Dirt in vacuum pump diaphragm
 • Vacuum setting incorrect
 • Pulses from pump
 • **Solutions**
 • Control of vacuum pressures +/- fluctuations
 • Smooth flow control – not pulsing
 • Maintain adequate flow of ink – don’t run out
Typical IDS Issues

• **Sedimentation**
 • **Symptoms**
 • Heads clog
 • Parts of the ink system clog – filters etc.
 • Reduced flow to heads
 • **Causes**
 • Heavily pigmented inks
 • Unstable dispersion
 • **Solutions**
 • Recirculating flow mode
 • Adjustable flow rate useful
 • Avoid pigment collection points
 • Use special pumps – resistant to abrasion which can wear internal components
 • Agitation of ink – in bulk tank

Image source: Porvair filters
Typical IDS Issues

• **Materials compatibility issues**
 • **Symptoms**
 • Blocked nozzles
 • Ink starvation
 • Swelling of tubes
 • Failure of the system
 • **Solutions**
 • Can be difficult to fault find
 • Can cause expensive problems
 • Choose components carefully and do sufficient materials compatibility testing
 • Material can leech into the ink
 • FEP or PTFE (not silicone!)
Typical IDS Issues

• General system unreliability
 • Causes
 • Unsuitable components e.g. ink pump type
 • Poor quality components
 • Poor control logic/software
 • Solutions
 • Appropriate components e.g. ink pump type
 • Good quality components
 • Tried and tested components
 • Implement industry standard control techniques/software
Summary

• **Insure against future problems by careful design and planning**
 • Materials compatibility, correct components, follow ink and printhead manufacturer guidelines etc.

• **Over-specify on prototype**
 • Simplify and cut cost when proven

• **Low flow use with end shooter printheads is growing**
 • No flow for CMYK
 • Low flow for W

• **Recirculating/controlled flow printheads increasing**
 • More demanding for IDS design and implementation
Debbie Thorp, Business Development Director
debbie.thorp@globalinkjetsystems.com

Global Inkjet Systems Limited
The Jeffreys Building
Cowley Road
Cambridge CB4 0DS
Tel: +44 (0)1223 733 733
Web: www.globalinkjetsystems.com

Technical support offices in UK, Japan and China