

Direct-to-Shape Printing of Complex Objects

Phil Collins, Director – Advanced R&D Global Inkjet Systems Ltd

Dusseldorf – October 2018

GIS – Company Overview

- Leading provider of technology solutions to industrial inkjet systems builders
- Supported printhead manufacturers
 - Fujifilm Dimatix, Konica Minolta, Kyocera, Ricoh, Toshiba Tec, Xaar
- Founded November 2006
 - Privately owned
- Based in Cambridge, UK
 - Technical support in UK, China and Japan
- Employees 70
- Patent protected technology
- Supplier & partner to over 130 customers worldwide

GIS – **Products**

Atlas[®] User Interface

Atlas[®] Server

Drive Electronics

Ink Delivery Systems

Used in broad range of applications – textiles, labels, security printing, décor, spot varnish, product decoration, corrugated, ceramics, functional coatings, materials deposition, 3D, robotics and more

Agenda

- Challenges
 - What are the problems?
- Tubes, cones & tubs
 - Widely used, so experience exists
 - Assumptions of 2D printing start to break down
- More complex shapes
 - A generic approach, applied to a sphere
 - Some new challenges
 - From concept to reality

Direct-to-Shape Printing of Complex Objects

	Flat Surfaces	Curved Surfaces		
Density Correction				
Throw Distance & Flight Time				
Nozzle Alignment & Interleaving				
Screening				
Transport & Encoder Configuration				

- Well established/well understood technology
 - Fixed radius of curvature
 - Cylinder unwraps to a rectangle or square
- But as print speed is increased, and/or radius of curvature decreased
 - Throw distances vary
 - Flight time differences become significant for multi-column print heads

Cones

- Cones or cone sections are useful for many applications
 - Unfolds to an arced rectangle / section of a circle
 - Corrections are relatively simple, provided heads are narrow and mounted symmetrically
- Challenges
 - Nozzle alignment
 - Density correction
 - Dot gain management
 - Avoid screening artefacts

stape rieven					
		Shape Type	Shape Type Cone		v
		Printhead Type Ge	Gen	5-1C	4
		Property		Value	_
0		Citer Curve Inner Curve Start X Repolution Printheado perin Printheado perin Esport Roade X Invent Nozale Y Printheado perin Esport Folder Riesanne Number of Irika Selt mois reform Cindle rem majo	n k	G00.00000 400.00000 500.118133 False 6 C:/ProgramData/Global Cone 1 False Ture	
Status	Generate Correction Map	Envert Map Y El Advanced Error Diffusion Fa Random Noise Taront X Bas	ector	False 0.990000 0.200000 0.017625	~

Image & animation source: GIS

- Mixture of cone sections and flat surfaces
- Necessary corrections change during the print
 - Often from pixel to pixel
- Print system is more complex
 - No longer rotating about a single axis
 - Transport design may require a synthetic encoder

Agenda

- Challenges
 - What are the problems?
- Tubes, cones & tubs
 - Widely used, so experience exists
 - Assumptions of 2D printing start to break down
- More complex shapes
 - A generic approach, applied to a sphere
 - Some new challenges
 - From concept to reality

Direct-to-Shape Printing of Complex Objects

More Complex Shapes

- Strong demand in the market particularly industrial
 - Automotive parts; industrial components; aerospace; and much more....
 - Many projects underway most long term and confidential
- Automotive examples using Heidelberg Omnifire 250/1000
 - Mercedes Smart cars
 - Customisation of ventilation nozzles, instrument bezels
 - Borbet

Generic Curved Surface Workflow

Wrapping a Sphere

3D Mesh

Texture

- Many tools available for wrapping
 - Well established technologies from gaming, augmented reality industries, etc.
 - Many different ways to wrap, edit directly on to 3D surfaces

Unwrapping a Sphere

- "Unwrap" the image and design a print path
 - Taking into account the constraints of the object to be printed, inkjet printhead, capability of the robot
 - Currently we do this manually, which is appropriate for most manufacturing applications, but there is research towards automation

www.globalinkjetsystems.com © Global Inkjet Systems Ltd

www.globalinkjetsystems.com © Global Inkjet Systems Ltd

Where Can We Print?

At printhead scale and below: convex or near-convex shapes

Where Can We Print?

At printhead scale and below: convex or near-convex shapes

Where Can We Print?

At larger scales: anywhere we can reach e.g. in-mold decoration (IMD)

Positioning Accuracy

Industrial robots have excellent accuracy for many industrial applications ...

... but printing requirements are tight

- \bullet Typical industrial robots have absolute accuracy of 200-500 μm
- Inkjet printing requirements are typically 10x finer
- Robot repeatability is better than absolute accuracy, so calibration is possible

Transport Mechanisms

	General Purpose Robots	Custom Mechatronics
Advantages	 Available off-the-shelf Many specifications Well supported 	 Specific to application Implementation efficiency
Disadvantages	 Positioning accuracy Under utilisation of standard feature sets Encoders not included 	 One-off design, build and debug costs Timescale
Suitability	Fast development, short run systems that fit available specifications	Longer production runs Systems with special requirements

Encoders

- Very useful when printing on flat or regular curved surfaces
 - Jetting precision 1 μm (<5% pixel pitch @ 1200 dpi) possible
 - Harder to apply to complex print paths
- Not standard on industrial 6-axis robots
 - But can be added
- Hybrid techniques
 - Combine robot handling for shape orientation with linear transport plus encoder
 - Synthetic encoders: combine multiple encoder inputs into one

GLOBAL INKJET SYSTEMS

Shape Accuracy

All manufactured objects have tolerances

- E.g. Polypropylene sphere
- Inexpensive consumer product

www.globalinkjetsystems.com © Global Inkjet Systems Ltd

Shape Accuracy Compensation

• Measure the target shape accurately

- Mechanical profile gauges
 - Adequate, but rather slow
 - Contact with target shape may be a problem
- Laser triangulation sensors
 - Resolutions down to ~1 μm, sample rates 1-100kHz
 - Non-contact
- Apply measurements as corrections to the mesh model
 - For per unit variations this can be done as a late stage delta
 - Output adjusted swathe data

GIS

Stitching

- Stitching is a key area where inaccuracies will show
 - Positioning errors cause gaps or overlaps, familiar from 2D printing

- Careful control is required of multiple factors:
 - Accuracy of transport, especially robots near to singularities
 - Print synchronisation
 - Variation of the target shape from nominal dimensions

From Concept to Reality

- Starting with a sphere
- Using a robot to position the shape under the printheads
- We built a test print rig

Apply the Workflow

From Concept to Reality

Result: a printed polypropylene spheroid

- CMYK 1200 dpi
- Latitude swathes, 18^o high
- 300dpi native; x 4 interleave

Key Points to Take Away

- Inkjet printing of complex irregular shapes is possible today
- Precision positioning is vital, and more complex than for 2D
- Industrial robots are very useful, but not the whole solution

Direct-to-Shape Printing of Complex Objects

Thank you – Any Questions?

Phil Collins, Director – Advanced R&D phil.collins@globalinkjetsystems.com

Global Inkjet Systems Limited

Edinburgh House St Johns Innovation Park Cowley Road Cambridge CB4 0DS UK

 Tel:
 +44 (0)1223 733 733

 Web:
 www.globalinkjetsystems.com

Technical support offices in UK, Japan and China

