Inkjet Decoration & Coating of Consumer Products & Industrial Parts

Debbie Thorp - Business Development Director

InPrint USA
Louisville, KY 9-11th April 2019
Agenda

• Brief introduction to GIS
• Introduction to Direct to Shape (DTS)
• Decoration on cylinders, cones & tubs
• Functional coatings with inkjet
 • Challenges – and solutions
• More complex shapes
 • Some more challenges – and solutions
Global Inkjet Systems Ltd

- Leading independent developer of inkjet technology
 - Supply inkjet capability to OEM system builders, specialist integrators and end users
 - Support a broad range of inkjet printheads in wide range of applications and industries

- Based in Cambridge, UK
 - 12+ years of growth & technology innovation
 - 70+ employees
 - 130+ customers world-wide
 - Support offices in UK, Japan and China

Image source: GIS
GIS - Product Groups

- **Digital Front End**
 - Atlas® User Interface
 - Raster Image Processing

- **Machine Control**
 - Atlas® Server

- **Print Controllers**
 - Datapath & Drive Electronics

- **Ink Delivery Systems**
 - Controlled Temperature, Pressure and Flow

- GIS provides key technology to industrial inkjet systems builders, specialist integrators and large end users
- From pixels to droplets: we supply technology for the whole data pipeline – from image to print
Disclaimer

Global Inkjet Systems supplies inkjet technology and components to 130+ original equipment manufacturers world-wide. As a matter of policy, we do not disclose our customer relationships.

Some of the following slides contain images chosen to illustrate the range of inkjet print systems which are available in the market. The presence, or absence, of any manufacturer’s products in these images does not in any way imply a commercial relationship between that manufacturer and GIS.
Inkjet DTS Development Timeline

Flat & Semi-Flat
![Images of flat items]

Tubes/Cylinders
![Images of tubes and cylindrical items]

Cones
![Images of conical items]

Tubs
![Images of tubular items]

Complex shapes
![Images of complex shapes]

Image source: Mimaki, InkCups Now, EPS, Krones, Machines Dubuit, Nakan, ITW, Martinenghi, Plastic-Molds, Wifag
Inkjet – Direct to Shape

• Not everything we want to decorate or coat is flat
• Tubes, cones, tubs - now well established technology
 • Many systems – low & high production
 • Glass, plastics, aluminium
• Cones & tubs – require correction in software

Image source: KHS, Till, Martinenghi, Wifag, EPS
Tubes

- Well established/well understood technology
 - Fixed radius of curvature
 - Cylinder unwraps to a rectangle or square
- Flight time differences become more complex as print speed is increased, and/or radius of curvature decreased
 - Printheads with slim format/two rows of nozzles popular
 - Flight time difference can be significant for multi-column print heads
Cones

- Cones or cone sections are useful for many applications
 - Unfolds to an arced rectangle / section of a circle
 - Corrections are relatively straightforward, provided heads are narrow and mounted symmetrically – more complex for larger heads

- Challenges
 - Nozzle alignment
 - Density correction
 - Dot gain management
 - Avoid screening artefacts
Tubs

- Mixture of cone sections and flat surfaces
- Required corrections change during the print
 - Often from pixel to pixel
- Print system is more complex
 - No longer rotating about a single axis
 - Transport design may require a synthetic encoder
Many DTS Systems Available

Image source: InkCups Now, Engineered Print Solutions, Machines Dubuit, Hinterkopf, Martinenghi
Inkjet Challenges – Curved Surfaces

<table>
<thead>
<tr>
<th></th>
<th>Flat Surfaces</th>
<th>Curved Surfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density Correction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Throw Distance & Flight Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nozzle Alignment & Interleaving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
More Complex Shapes

- Many complex shapes have eluded inkjet printing & coating
- Analogue technologies dominate
- Inkjet moving from partial to full coverage printing / coating of any object

Photo credit: © Upper Austrian Research, Hartwig Zörgl

Other images from YouTube, Airbus & Ritzi (Heidelberg)
Inkjet Challenges – Navigation & Motion Control

<table>
<thead>
<tr>
<th></th>
<th>Flat Surfaces</th>
<th>Curved Surfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry</td>
<td>2 Dimensions</td>
<td>3 Dimensions</td>
</tr>
<tr>
<td></td>
<td>2 Degrees of Freedom</td>
<td>6 Degrees of Freedom</td>
</tr>
<tr>
<td>Print Path</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motion Control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inkjet Challenges - Jetability

- **Viscosity**
 - Most drop on demand printheads require fluids with viscosities in the range 7-15 centipoise (cps) at jetting temperature
 - Higher viscosity fluids can be heated to reduce viscosity to be jettable
 - Some new printhead developments will enable higher viscosities
 - Opportunities for inkjet to add efficiency and precision drop placement
Inkjet Challenges – Throw Distances

- **Inkjet printers are typically designed to throw ink drops a distance of 1 – 2mm to the surface**
 - This produces sharp, detailed graphics and text – down to 2pt @ 1200dpi
 - And works well even when the head or surface are moving at up to 5m/s relative speed
 - But has created a perception that greater throw distances are a problem
- **In fact, nozzle drop velocities are in the range 5-8m/s**
 - Medium to large drops will travel over 20mm
 - Placement accuracy does degrade with range, so a trade-off must be found
 - Fine detail can be achieved on near-flat surfaces with shorter throw distances
 - Coating coverage can be achieved even in concavities up to ~25mm depth

Image Source: ImageXpert
Case Study – Cyan Tec

- Typical interior trim part
- With high gloss piano black coating

Disadvantages of Spray
Case Study – Cyan Tec

- Typical spray path
- Two passes overlap
- Begins & finishes off the part
- Can’t be controlled over gaps

Disadvantages of Spray
Case Study – Cyan Tec

- Product surface: 575 cm²
- Spray pattern: 2,243 cm²
- Waste: 1,668 cm²
- Waste: 74%

Permission granted by Cyan Tec
Case Study – Cyan Tec

The Robotic Digital Deposition Process

- Complete piano black facia
- Scratch resistant coating
- Zero overspray
- Virtually zero waste
- >70% material reduction
- >70% VOC emissions reduction
Complex Shapes - From Concept To Reality

- Starting with a sphere
- Using a robot to position the shape under the printheads
- We built a test print rig
Mesh & Texture

- Many tools available for wrapping
 - Well established technologies from gaming, augmented reality industries, etc.
 - Many different ways to wrap, edit directly on to 3D surfaces
 - Result is expressed as a texture map

Image source: GIS
Print Paths

- **Design a print path**
 - Taking into account the constraints of the object to be printed, inkjet printhead, capability of the robot
Positioning Accuracy

Industrial robots have sufficient accuracy for many industrial applications ...

... but printing requirements are tight

• Typical industrial robots can achieve absolute pose accuracy with calibration of 200-500 µm
• Inkjet printing requirements for graphics are typically 5-10x finer, but not so precise for coating
• Robot repeatability is better than absolute accuracy, so further calibration is possible

Image source: ABB and Fanuc
Creation Tools

- Import Mesh & Texture
- Swathe Decomposition
- Swathe paths
- Transport Control
- Measure & Correct
- Print Control

- Colour Separation
- Unwrap
- Density Correction & Screening

Image source: GIS
Result: a printed polypropylene spheroid

- CMYK 1200 dpi
- Latitude swathes
- 300dpi native x 4 interleave
Software Solutions

- Nothing is perfect and inkjet printing / coating is no exception
- However, software can compensate for many print quality issues

- Intelligent image management
 - Colour correction
 - Printhead stitch correction
 - Nozzle density correction
 - Nozzle out compensation
 - Geometry correction
Summary - Implications & Opportunities

• Inkjet already being used in many decorative and functional coating applications
• Advances in printhead technologies, software and fluids continues
 • Some highly viscous fluids for coatings remain a challenge
 • Ink jettable fluids - key to unlocking more applications
• Inkjet no longer constrained to flat surfaces
• Great potential for further usage – particularly in industrial products

Image source: GIS, Martinenghi
FOR MORE INFORMATION - PLEASE VISIT US ON BOOTH 319

Debbie Thorp, Business Development Director
debbie.thorp@globalinkjetsystems.com

Global Inkjet Systems Limited
Edinburgh House
St Johns Innovation Park
Cowley Road
Cambridge CB4 0DS

Tel: +44 (0)1223 733 733
Web: www.globalinkjetsystems.com

Technical support offices in UK, Japan and China