Inkjet in Coatings and Complex Shapes
- Technologies & Processes -

Debbie Thorp - Business Development Director

ESMA Advanced Functional & Industrial Printing Conference
Düsseldorf, Germany 27-28th April 2019
Agenda

• Brief introduction to GIS
• Functional coatings with inkjet
 • Challenges – and solutions
• Coating / printing direct to shape
• More complex shapes
 • Some more challenges – and solutions
Global Inkjet Systems Ltd

• **Leading independent developer of inkjet technology**
 • Supply inkjet capability to OEM system builders, specialist integrators and end users
 • Support a broad range of inkjet printheads in wide range of applications and industries

• **Based in Cambridge, UK**
 • 12+ years of growth & technology innovation
 • 70+ employees
 • 130+ customers world-wide
 • Support offices in UK, Japan and China

Image source: GIS
GIS - Product Groups

- **Digital Front End**
 - Atlas® User Interface
 - Raster Image Processing

- **Machine Control**
 - Atlas® Server

- **Print Controllers**
 - Datapath & Drive Electronics

- **Ink Delivery Systems**
 - Controlled Temperature, Pressure and Flow

- GIS provides key technology to industrial inkjet systems builders, specialist integrators and large end users

- From pixels to droplets: we supply technology for the whole data pipeline – from image to print
Disclaimer

Global Inkjet Systems supplies inkjet technology and components to 130+ original equipment manufacturers world-wide. As a matter of policy, we do not disclose our customer relationships.

Some of the following slides contain images chosen to illustrate the range of inkjet print systems which are available in the market. The presence, or absence, of any manufacturer’s products in these images does not in any way imply a commercial relationship between that manufacturer and GIS.
Inkjet Technology

- **Industrial piezo inkjet printheads**
 - Dominant technology: Drop on demand
 - Drop sizes: 2 – 200 picoLitres
 - Firing rates: 10 – 220kHz
 - Highly integrated: 100s – 1000s of nozzles per head
 - Printheads and variants for many applications

Image source: printhead web site
Diagram source: Pivotal Resources
Inkjet Strengths

- Non contact
- Additive process
- Subtractive process
- Broad fluid capability
 - Aqueous
 - Solvent
 - UV curable inks, resists & adhesives
 - Conductive fluids
 - Jettable polymers & dielectrics
 - Jettable active & passive electronics
 - Acid resist
- Precise drop formation
 - Small drops for small features
 - Large drops for coatings/area fill
- Precise drop location
- Conserves expensive materials
- Reduces waste
- Can reduce cost
- High drop production rate capability
- Long printhead life
 - Heavy duty cycle capability
- Proven reliability in production environments
- Inkjet as a partial or complete solution
- Integrated into standalone & hybrid manufacturing systems
- Highly integrated, modular technology
Software Solutions

• Nothing is perfect and inkjet printing / coating is no exception
• However, software can compensate for many print quality issues

• Intelligent image management
 • Colour correction
 • Printhead stitch correction
 • Nozzle density correction
 • Nozzle out compensation
 • Geometry correction
Inkjet – Think Graphics – and Beyond Graphics

Image source: Meyer Burger
Inkjet – Think Beyond Graphics

Indirect Functional Processing

Masking - Etching

- Pre processing (Sample preparation)
- Print Process (Ink / printhead / surface interaction)
- Post processing (Functional layer)
- Result (Finished product)

Masking – Lift off

- Pre processing (Sample preparation)
- Print Process (Ink / printhead / surface interaction)
- Post processing (Functional layer)
- Result (Finished product)

Image source: Meyer Burger
Inkjet Challenges - Jetability

- **Viscosity**
 - Most drop on demand printheads require fluids with viscosities in the range 7-15 centipoise (cps) at jetting temperature
 - Higher viscosity fluids can be heated to reduce viscosity to be jettable
 - Some new printhead developments will enable higher viscosities
 - Opportunities for inkjet to add efficiency and precision drop placement
Inkjet Challenges - Jetability

• **Particulates**
 • Some visual effects in analogue fluids are achieved using large particles, which would probably block nozzles in inkjet
 • Some of these effects could be potentially achieved instead using digitally controlled patterns

• **Inkjet provides different ways of producing optical effects**
 • Currently lot of activity in commercial print & packaging – same techniques could be applied in functional coatings

Image Source: Scodix
Inkjet Challenges – Throw Distances

• **Inkjet printers are typically designed to throw ink drops a distance of 1 – 2mm to the surface**
 - This produces sharp, detailed graphics and text – down to 2pt @ 1200dpi
 - And works well even when the head or surface are moving at up to 5m/s relative speed
 - But has created a perception that greater throw distances are a problem

• **In fact, nozzle drop velocities are in the range 5-8m/s**
 - Medium to large drops will travel over 20mm
 - Placement accuracy does degrade with range, so a trade-off must be found
 - Fine detail can be achieved on near-flat surfaces with shorter throw distances
 - Coating coverage can be achieved even in concavities up to ~25mm depth

Image Source: ImageXpert
Example: Inkjet Coating vs. Spray Coating

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precise drop formation and placement</td>
<td>High transfer efficiency</td>
</tr>
<tr>
<td>Digital control</td>
<td>Fluid cost savings</td>
</tr>
<tr>
<td>Drop on demand technology</td>
<td>No overspray</td>
</tr>
<tr>
<td>Digital control</td>
<td>Precision coatings</td>
</tr>
<tr>
<td></td>
<td>Environmental management cost savings</td>
</tr>
<tr>
<td>Digital control</td>
<td>No physical masking required</td>
</tr>
<tr>
<td></td>
<td>Short run customisation</td>
</tr>
<tr>
<td></td>
<td>Labour cost savings</td>
</tr>
<tr>
<td></td>
<td>Time saving</td>
</tr>
<tr>
<td>Highly integrated, modular technology</td>
<td>Fluid changes by switching print module</td>
</tr>
</tbody>
</table>
Coating application example:
• Depositing 80µm layer onto a flat surface
• Medium density head: 1000 nozzles @ 600dpi
• Firing large 160 picoLitre drops @ 20kHz
• Allow 10% for curing shrinkage

Surface coverage for a single head:
• Head width: 42.3mm
• Print speed: 846mm/s

Area covered by single printhead: 129 m²/hour
Hard Stitching

- **Masking (Hard Stitching)**
 - Nozzle on/nozzle off
 - Wide variety of options
- **Stitches can massively improve output quality & different applications benefit from different strategies**

![Examples of masking stitches](image)

- **2-D Density**
- **GIS Stitching Tool**
- **X & Y Dither**
- **Flat/No Stitch**
- **1-D Gradient**
- **50% Stitch**
- **X & Y Dither**
Greyscale Stitching

• **Greyscale stitching makes full use of the greyscale capabilities of the head**
 • Slowly reduces the density of the image printed by one printhead while increasing the density printed by the next printhead
 • Only adds value over masking in areas where the density of the image is greater than the smallest drop size

[Diagram showing greyscale stitching process with examples of printing by different printheads and the effect of greyscale stitching compared to masking.]
Achieving Uniform Coatings

- **Large areas of solids / flat colours / uniform coatings**
 - Drop volumes not always consistent across printhead
 - “Non-linearity” in drop volume
 - Even small difference can affect final print
 - We want uniformity of drop laydown
 - We need to linearize the printheads

- **Printhead linearization**
 - Electronic/printhead solutions
 - Software solutions
Printhead Density Correction

- **Electronic/printhead solutions**
 - Depending on printhead technology
 - Trim each nozzle/cluster of nozzles/nozzle bank
 - Trimming can introduce drop alignment problems
 - Tuning for volume will modify velocity
 - **Image correction in software – offers greatest capability**
 - RIP’ed data (contone or screened) can be manipulated to:
 - Reduce the number of drops in given area, or
 - Reduce the size or value of the greyscale drop in a given area
Missing Nozzles

Nozzle sizes are getting smaller

• More easily blocked or deflected

Large print bar arrays

• Many more nozzles
• Higher probability of issues and lower MTBF
• Need coping strategies

Strategy 1: Redundancy

• Add second row of printheads per colour so when one nozzle fails another can be used
• Expensive

Strategy 2: Hide the problem

• Identify where a nozzle is faulty and spread the jetting responsibility to neighbouring nozzles and/or colours
Nozzle Out Compensation

• Many different strategies exist using neighbouring nozzles
 • Correction in contone or screened data
 • Hide error in same colour plane to neighbouring nozzles
 • Hide error in other inks - in multi-ink backgrounds
 • If Cyan nozzle fails - could add a little black to hide white space
 • If Black fails – use composite (CMY) black
• Works best in mid & light mid tones
 • Also improves dark tones
• Isolated nozzles work best
 • Clusters of nozzles much more difficult to hide
 • Technology works best where there is some substrate bleed/drop overlap
• Helps disguise/makes the missing nozzle less visible
 • Less white space
Inkjet – Direct to Shape

• Not everything we want to decorate or coat is flat
• Tubes, cones, tubs - now well established technology
 • Many systems – low & high production
 • Glass, plastics, aluminium
• Cones & tubs – require correction in software

Image source: GIS software, SMT Digital, KHS, Till, Martinenghi, Wifag
Inkjet Challenges – Complex Curved Surfaces

<table>
<thead>
<tr>
<th></th>
<th>Flat Surfaces</th>
<th>Curved Surfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density Correction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Throw Distance & Flight Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nozzle Alignment & Interleaving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
More Complex Shapes

- Many complex shapes have eluded inkjet printing & coating
- Analogue technologies dominate
- Inkjet moving from partial to full coverage printing of any object

Photo credit: © Upper Austrian Research, Hartwig Zörgl

Other images from YouTube, Airbus & Ritzi (Heidelberg)
Inkjet Challenges – Navigation & Motion Control

<table>
<thead>
<tr>
<th></th>
<th>Flat Surfaces</th>
<th>Curved Surfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry</td>
<td>2 Dimensions 2 Degrees of Freedom</td>
<td>3 Dimensions 6 Degrees of Freedom</td>
</tr>
<tr>
<td>Print Path</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motion Control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
From Concept To Reality

• Starting with a sphere
• Using a robot to position the shape under the printheads
• We built a test print rig
Mesh & Texture

- Many tools available for wrapping
 - Well established technologies from gaming, augmented reality industries, etc.
 - Many different ways to wrap, edit directly on to 3D surfaces
 - Result is expressed as a texture map
Print Path

• **Design a print path**

 • Taking into account the constraints of the object to be printed, inkjet printhead, capability of the robot

 • Currently we do this manually, which is appropriate for most manufacturing applications, but there is research towards automation

Latitude
Spiral
Other
Positioning Accuracy

Industrial robots have sufficient accuracy for many industrial applications ...

... but printing requirements are tight

• Typical industrial robots can achieve absolute pose accuracy with calibration of 200-500 µm
• Inkjet printing requirements for graphics are typically 5-10x finer, but not so precise for coating
• Robot repeatability is better than absolute accuracy, so further calibration is possible
Shape Variation

All manufactured objects have tolerances
• E.g. Polypropylene sphere
• Inexpensive consumer product

Nominal: 75 mm radius

Structural errors
Assembly of two hemispheres

1-1.5 mm

Precision errors
Limitations of process

~0.25 mm

Image source: GIS
Stitching

- **Stitching is a key area where inaccuracies will show**
 - Positioning errors cause gaps or overlaps, familiar from 2D printing

- **Careful control is required of multiple factors:**
 - Accuracy of transport
 - Print synchronisation
 - Variation of the target shape from nominal dimensions

Image source: GIS
Apply the Workflow

Creation Tools

Import Mesh & Texture

Swathe Decomposition

Swathe paths

Transport Control

Measure & Correct

Colour Separation

Density Correction & Screening

Print Control

Unwrap
Result: a printed polypropylene spheroid

- CMYK 1200 dpi
- Latitude swathes
- 300dpi native x 4 interleave
Summary - Implications & Opportunities

- Inkjet already being used in many functional coating applications
 - Decorative & functional
- Advances in printhead technologies, software and fluids continues
 - Some highly viscous fluids remain a challenge
 - Ink jettable fluids - key to unlocking more applications
- Inkjet no longer constrained to flat surfaces
- Great potential for further usage
Contacts

Nick Geddes, CEO
nick.geddes@globalinkjetsystems.com

Debbie Thorp, Business Development Director
debbie.thorp@globalinkjetsystems.com

Global Inkjet Systems Limited
Edinburgh House
St Johns Innovation Park
Cowley Road
Cambridge CB4 0DS

Tel: +44 (0)1223 733 733
Web: www.globalinkjetsystems.com

Technical support offices in UK, Japan and China