

Design and Operation of Inkjet Ink Delivery Systems

Jozef Vlaskamp, Senior Systems Engineer Global Inkjet Systems Ltd

Ghent – September 2018

5th International

Digital Textile Congress

GIS – Global Inkjet Systems

- Founded November 2006
 - Privately owned
- Leading provider of technology solutions for industrial inkjet systems
- HQ in Cambridge, UK
- Technical support in UK, China and Japan
- >60 employees
- Over 150 customers

- RIP software
- Application software
- Customisable user interfaces
- Ink delivery system components

- Main functions and basic requirements of ink delivery systems (IDS)
- Flow modes and printhead types
- Design options & challenges
 - Heating
 - Degassing
 - Customizing print bars

• Typical IDS issues

- Diagnosing common issues
- Troubleshooting and solutions

Main Functions of Ink System

Meniscus pressure

- •Ink pressure inside the printhead
 - Meniscus is formed by a slight negative pressure at the nozzle

•Air pressure control

- Negative air pressures to maintain meniscus pressure of each printhead
- At different flow rates
- •Scanning XY systems withstand the acceleration/deceleration of printhead carriage

Ink pumping

•Control for pumping of ink from bulk ink tank

Purging

- Positive pressure to the ink in the printhead
 - Low pressure and high pressure purge (required by some printheads)

Basic Requirements

• Filtration

• Minimise chance of particles clogging the nozzles

•Flow modes

- •Support for recirculation or no recirculation
- •Degas
 - •Stop air bubbles reaching the printhead/nozzles
 - Avoid air pockets in ink system

•Heat the ink

•For correct operating temperature (printhead dependent)

Basic Requirements

•Shared or individual pressure

Example shows shared pressure CMYK and individual pressure White

Basic Requirements

System monitoring

- •User friendly GUI
- •Graphing tools pressure, pump & solenoid activity etc.

Ultimate aim: Reliable system for production environments!

Flow Modes

Low Flow

Controlled Flow

No Flow

No Flow/End Shooter

Basic characteristics

- Air pressure range typically 250-500mm between header tank and nozzle plate
- In this example, negative pressure P (-350mm) applied to balance the positive head of fluid (300mm) and provide a negative meniscus pressure of -50mm at the nozzle plate

Low Flow/End Shooter

Basic characteristics

- Height difference between the header tanks
- Same negative air pressure applied to both tanks
- System constantly tries to level and creates low flow through the printhead

Controlled/Adjustable Flow

Basic characteristics

- Two pressure values assigned
- Printhead manufacturers tend to specify the pressure difference
- Differential air pressure creates flow through the printhead
- Air Pressure¹ and Air Pressure² are both adjustable to vary/control the flow rate

Printheads & Flow Modes

Example Printheads	No Flow	Low Flow	Controlled Flow	Кеу
Fujifilm Samba G3L/G5L	×	×	✓	✓ Required
Fujifilm Starfire SG1024	×	×	\checkmark	(\checkmark) Optional
Fujifilm Sapphire 256	\checkmark	(✓)	×	
Konica Minolta 1024i	\checkmark	(✓)	×	
Kyocera KJ4B-QA/YH	\checkmark	(✓)	×	
Kyocera KJ4A-TA/AA/RH	\checkmark	(✓)	×	
Ricoh MH5441	\checkmark	(✓)	(✓)	
TTEC CF1/CF3	×	×	\checkmark	
Xaar 1003	×	×	\checkmark	
Xaar 5601	×	×	\checkmark	

Ink Requirements

Ink Type	Typical Ink System Requirements
UV Cure	 Requires heating (most printheads have heaters and/or use heated mounts) Degassing can be advantageous - best for high frequency/large number of heads. Must be used with care - can make ink over-sensitive to curing
Aqueous	(Requires) degassing
Oil based	None special
Solvent	May require materials compatibility testing
White/ Ceramic	Require special pumps due to abrasive ink pigment and particle settling
Fluid Deposition/ Functional Fluid/ Ink Development	 Requires materials compatibility testing Typically requires small volumes due to high value of fluid– may affect header tank design/size

Heating

Ink performance varies with temperature

- Higher temperature
 - Reduces viscosity
 - Increases evaporation
- Inks have a recommended operating temperature window (consult you ink supplier)

Temperature most critical at the printhead/jetting

Mode of Heat	Comment	Pros	Cons
In-line Heaters	Only work with recirculating systems	Provide fast and controllable ink heating	• Cost
Heated Header Tanks	 Typically used in no flow or low flow systems 	Lower cost than in-line heaters	 Only suitable for low density printing Temperature control less accurate
Heated Head Plates	Can be used with all flow modes	 Provides uniform thermal environment Reduces workload on printhead/ink system heating improving thermal control 	Thermal expansionAdds cost

GIS GLOBAL INKJET SYSTEMS

Degassing

- (Required) for aqueous inks
 - Sometimes not used on small systems to save cost
- Recommended for some UV inks
 - Typically on large, high print frequency systems
- Contactor must be right size for flow rate and compatible with ink
- Vacuum must be applied
 - High vacuum for aqueous ink
 - Lower vacuum for UV ink
 - Risk stripping all oxygen out of the ink and cause curing

Larger Print Bars – Tank Options

- Manifold system
 - Popular design
 - Cost efficient to implement
 - Can be prone to air traps
 - Trapped air can sit at top of manifold
 - Can be difficult to fill
 - Extendable

- Custom header tanks
 - Header tank acts as manifold
 - Valve for each printhead
 - Equal flow resistance
 - Extendable

Typical IDS Issues

Common Issues Attributed to IDS

Common Issues with Alternative Causes

Trapped Air

Symptoms

- Difficult morning start up
- Ink dripping from nozzle plate, even when pressure set correctly
- Intermittent printing
 - Heads may print well for short time until air moves into the head
 - Heads may print well for low density images but fail quickly for high density images

- Ink degassing
- Avoid tubing with uphill path or loops
- Correct tube size (not too small or too large) restricted flow can lead to air being sucked into the nozzle as the head fails to pull ink through the system
- Avoid restrictions in valves & fittings

Materials Compatibility

• Symptoms

- Blocked nozzles
- Ink starvation
- Swelling of tubes
- Failure of the system

- Can be difficult to fault find
- Can cause expensive problems
- Choose components and do sufficient materials compatibility testing
 - Material can leech into the ink
 - Use e.g. FEP or PTFE

Poor Pressure Control

• Symptoms

- Ink dripping at the head or air sucking into the head
- Variations in optical density in the image volume of ink in each drop is affected

Causes

- Vacuum pump on continuously creates loss of pressure
- Dirt in vacuum pump diaphragm
- Vacuum setting incorrect
- Pulses from pump

- Control of vacuum pressures +/- fluctuations
- Smooth flow control not pulsing
- Maintain adequate flow of ink don't run out

Sedimentation

• Symptoms

- Heads clog
- Parts of the ink system clog filters etc.
- Reduced flow to heads

Causes

- Heavily pigmented inks (pigment agglomeration)
- Unstable/poor dispersion

- Recirculating flow mode
- Adjustable flow rate useful
- Avoid pigment collection points
- Use special pumps resistant to abrasion which can wear internal components
- Agitation of ink in bulk tank

General System Unreliability

• Causes

- Unsuitable components e.g. ink pump type
- Poor quality components
- Poor control logic/software

Solutions

- Appropriate components e.g. ink pump type
- Good quality components
- Tried and tested components
- Implement industry standard control techniques/software

24

Summary

- Insure against future problems by careful design and planning
 - Materials compatibility, correct components, follow ink and printhead manufacturer guidelines etc.

Over-specify on prototype

- Simplify and cut cost when proven
- Low flow use with end shooter printheads is growing
 - No flow for CMYK
 - Low flow for W
- Recirculating/controlled flow printheads increasing
 - More demanding for IDS design and implementation

Contacts

Jozef Vlaskamp, Senior Systems Engineer jozef.vlaskamp@globalinkjetsystems.com

Debbie Thorp, Business Development Director <u>debbie.thorp@globalinkjetsystems.com</u>

Global Inkjet Systems Limited

Edinburgh House St Johns Innovation Park Cowley Road Cambridge CB4 0DS UK

Tel: +44 (0)1223 733 733 Web: <u>www.globalinkjetsystems.com</u>

Technical support offices in UK, Japan and China

