GIS – Global Inkjet Systems

• Founded November 2006
 • Privately owned
• Leading provider of technology solutions for industrial inkjet systems
• HQ in Cambridge, UK
• Technical support in UK, China and Japan
• >60 employees
• Over 150 customers

• Drive electronics for wide range of inkjet printheads
• RIP software
• Application software
• Customisable user interfaces
• Ink delivery system components
Agenda

• Main functions and basic requirements of ink delivery systems (IDS)
• Flow modes and printhead types
• Design options & challenges
 • Heating
 • Degassing
 • Customizing print bars
• Typical IDS issues
 • Diagnosing common issues
 • Troubleshooting and solutions
Main Functions of Ink System

• **Meniscus pressure**
 • Ink pressure inside the printhead
 • Meniscus is formed by a slight negative pressure at the nozzle

• **Air pressure control**
 • Negative air pressures to maintain meniscus pressure of each printhead
 • At different flow rates
 • Scanning XY systems – withstand the acceleration/deceleration of printhead carriage

• **Ink pumping**
 • Control for pumping of ink from bulk ink tank

• **Purging**
 • Positive pressure to the ink in the printhead
 • Low pressure and high pressure purge (required by some printheads)
Basic Requirements

• **Filtration**
 • Minimise chance of particles clogging the nozzles

• **Flow modes**
 • Support for recirculation or no recirculation

• **Degas**
 • Stop air bubbles reaching the printhead/nozzles
 • Avoid air pockets in ink system

• **Heat the ink**
 • For correct operating temperature (printhead dependent)
Basic Requirements

• Shared or individual pressure

Example shows shared pressure CMYK and individual pressure White
Basic Requirements

• System monitoring
• User friendly GUI
• Graphing tools – pressure, pump & solenoid activity etc.

Ultimate aim: Reliable system for production environments!

Image source: GIS
Flow Modes

No Flow

Low Flow

Controlled Flow

Image source: GIS
No Flow/End Shooter

• Basic characteristics
 • Air pressure range typically 250-500mm between header tank and nozzle plate
 • In this example, negative pressure P (-350mm) applied to balance the positive head of fluid (300mm) and provide a negative meniscus pressure of -50mm at the nozzle plate

Image source: GIS
Low Flow/End Shooter

- **Basic characteristics**
 - Height difference between the header tanks
 - Same negative air pressure applied to both tanks
 - System constantly tries to level and creates low flow through the printhead

Image source: GIS
Controlled/Adjustable Flow

- **Basic characteristics**
 - Two pressure values assigned
 - Printhead manufacturers tend to specify the pressure difference
 - Differential air pressure creates flow through the printhead
 - Air Pressure1 and Air Pressure2 are both adjustable to vary/control the flow rate

![Diagram](Image source: GIS)
Printheads & Flow Modes

<table>
<thead>
<tr>
<th>Example Printheads</th>
<th>No Flow</th>
<th>Low Flow</th>
<th>Controlled Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fujifilm Samba G3L/G5L</td>
<td>❌</td>
<td>❌</td>
<td>✔</td>
</tr>
<tr>
<td>Fujifilm Starfire SG1024</td>
<td>❌</td>
<td>❌</td>
<td>✔</td>
</tr>
<tr>
<td>Fujifilm Sapphire 256</td>
<td>✔</td>
<td>(✔)</td>
<td>❌</td>
</tr>
<tr>
<td>Konica Minolta 1024i</td>
<td>✔</td>
<td>(✔)</td>
<td>❌</td>
</tr>
<tr>
<td>Kyocera KJ4B-QA/YH</td>
<td>✔</td>
<td>(✔)</td>
<td>❌</td>
</tr>
<tr>
<td>Kyocera KJ4A-TA/AA/RH</td>
<td>✔</td>
<td>(✔)</td>
<td>❌</td>
</tr>
<tr>
<td>Ricoh MH5441</td>
<td>✔</td>
<td>(✔)</td>
<td>(✔)</td>
</tr>
<tr>
<td>TTEC CF1/CF3</td>
<td>❌</td>
<td>❌</td>
<td>✔</td>
</tr>
<tr>
<td>Xaar 1003</td>
<td>❌</td>
<td>❌</td>
<td>✔</td>
</tr>
<tr>
<td>Xaar 5601</td>
<td>❌</td>
<td>❌</td>
<td>✔</td>
</tr>
</tbody>
</table>

Key
- ✔ Required
- (✔) Optional
Ink Requirements

<table>
<thead>
<tr>
<th>Ink Type</th>
<th>Typical Ink System Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV Cure</td>
<td>• Requires heating (most printheads have heaters and/or use heated mounts)</td>
</tr>
<tr>
<td></td>
<td>• Degassing can be advantageous - best for high frequency/large number of heads. Must be used with care - can make ink over-sensitive to curing</td>
</tr>
<tr>
<td>Aqueous</td>
<td>• (Requires) degassing</td>
</tr>
<tr>
<td>Oil based</td>
<td>• None special</td>
</tr>
<tr>
<td>Solvent</td>
<td>• May require materials compatibility testing</td>
</tr>
<tr>
<td>White/ Ceramic</td>
<td>• Require special pumps due to abrasive ink pigment and particle settling</td>
</tr>
<tr>
<td>Fluid Deposition/ Functional Fluid/ Ink Development</td>
<td>• Requires materials compatibility testing</td>
</tr>
<tr>
<td></td>
<td>• Typically requires small volumes due to high value of fluid – may affect header tank design/size</td>
</tr>
</tbody>
</table>
Heating

Ink performance varies with temperature
- Higher temperature
 - Reduces viscosity
 - Increases evaporation

Inks have a recommended operating temperature window (consult your ink supplier)

Temperature most critical at the printhead/jetting

<table>
<thead>
<tr>
<th>Mode of Heat</th>
<th>Comment</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-line Heaters</td>
<td>• Only work with recirculating systems</td>
<td>• Provide fast and controllable ink heating</td>
<td>• Cost</td>
</tr>
<tr>
<td>Heated Header Tanks</td>
<td>• Typically used in no flow or low flow systems</td>
<td>• Lower cost than in-line heaters</td>
<td>• Only suitable for low density printing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Temperature control less accurate</td>
</tr>
<tr>
<td>Heated Head Plates</td>
<td>• Can be used with all flow modes</td>
<td>• Provides uniform thermal environment</td>
<td>• Thermal expansion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reduces workload on printhead/ink system heating improving thermal control</td>
<td>• Adds cost</td>
</tr>
</tbody>
</table>
Degassing

• (Required) for aqueous inks
 • Sometimes not used on small systems to save cost

• Recommended for some UV inks
 • Typically on large, high print frequency systems

• Contactor must be right size for flow rate and compatible with ink

• Vacuum must be applied
 • High vacuum for aqueous ink
 • Lower vacuum for UV ink
 • Risk stripping all oxygen out of the ink and cause curing

Image source: Separel web site
Image source: GIS
Larger Print Bars – Tank Options

- **Manifold system**
 - Popular design
 - Cost efficient to implement
 - Can be prone to air traps
 - Trapped air can sit at top of manifold
 - Can be difficult to fill
 - Extendable

- **Custom header tanks**
 - Header tank acts as manifold
 - Valve for each printhead
 - Equal flow resistance
 - Extendable

Image source: GIS
Typical IDS Issues
Common Issues Attributed to IDS

- Late or Grouped Jetting
- Weak Jets at Start of Swathe
- Misdirected Jets
- Unreliable Jetting
- Weak Nozzles
- Failing Nozzles During Print
- Process Direction Density Variation
- Cross Process Density Variation
- High Print Speed Variation
- Print Density Uniformity
- Air In Printhead
- Ink On Nozzle Plate
- Printhead Lifetime
- Blocked Nozzles
- Blocked Printheads
- Hard to Prime
- Drop Ejection
- ?
- ?
- ?
Common Issues with Alternative Causes

- Unreliable Jetting
- Weak Jets at Start of Swathe
- Misdirected Jets
- Weak Nozzles
- Failing Nozzles During Print
- Late or Grouped Jetting
- Drop Ejection
- Ink Delivery System
- Process Direction Density Variation
- Cross Process Density Variation
- High Print Speed Variation
- Print Density Uniformity

Waveform / Electronics
- Printhead Lifetime
- Blocked Nozzles
- Blocked Prinheads
- Hard to Prime
- Low Print Speed

Ink On Nozzle Plate
- Air In Printhead

Ink
- Environmental / Media / Mechanical

Printhead
- Lifetime
- Air In Printhead
- In-House Failure
- Printhead

Hard to Prime
- Air In Printhead
- In-House Failure
- Printhead

Ink Delivery System
- Process Direction Density Variation
- Cross Process Density Variation
- High Print Speed Variation
- Print Density Uniformity

Air In Printhead
- In-House Failure
- Printhead

Ink On Nozzle Plate
- Air In Printhead
- In-House Failure
- Printhead
Trapped Air

• **Symptoms**
 • Difficult morning start up
 • Ink dripping from nozzle plate, even when pressure set correctly
 • Intermittent printing
 • Heads may print well for short time until air moves into the head
 • Heads may print well for low density images but fail quickly for high density images

• **Solutions**
 • Ink degassing
 • Avoid tubing with uphill path or loops
 • Correct tube size (not too small or too large) – restricted flow can lead to air being sucked into the nozzle as the head fails to pull ink through the system
 • Avoid restrictions in valves & fittings
Materials Compatibility

• **Symptoms**
 • Blocked nozzles
 • Ink starvation
 • Swelling of tubes
 • Failure of the system

• **Solutions**
 • Can be difficult to fault find
 • Can cause expensive problems
 • Choose components and do sufficient materials compatibility testing
 • Material can leech into the ink
 • Use e.g. FEP or PTFE
Poor Pressure Control

• **Symptoms**
 - Ink dripping at the head or air sucking into the head
 - Variations in optical density in the image – volume of ink in each drop is affected

• **Causes**
 - Vacuum pump on continuously creates loss of pressure
 - Dirt in vacuum pump diaphragm
 - Vacuum setting incorrect
 - Pulses from pump

• **Solutions**
 - Control of vacuum pressures +/- fluctuations
 - Smooth flow control – not pulsing
 - Maintain adequate flow of ink – don’t run out

Image source: GIS
Sedimentation

• **Symptoms**
 - Heads clog
 - Parts of the ink system clog – filters etc.
 - Reduced flow to heads

• **Causes**
 - Heavily pigmented inks (pigment agglomeration)
 - Unstable/poor dispersion

• **Solutions**
 - Recirculating flow mode
 - Adjustable flow rate useful
 - Avoid pigment collection points
 - Use special pumps – resistant to abrasion which can wear internal components
 - Agitation of ink – in bulk tank
General System Unreliability

• **Causes**
 - Unsuitable components e.g. ink pump type
 - Poor quality components
 - Poor control logic/software

• **Solutions**
 - Appropriate components e.g. ink pump type
 - Good quality components
 - Tried and tested components
 - Implement industry standard control techniques/software
Summary

• Insure against future problems by careful design and planning
 • Materials compatibility, correct components, follow ink and printhead manufacturer guidelines etc.
• Over-specify on prototype
 • Simplify and cut cost when proven
• Low flow use with end shooter printheads is growing
 • No flow for CMYK
 • Low flow for W
• Recirculating/controlled flow printheads increasing
 • More demanding for IDS design and implementation
Contacts

Jozef Vlaskamp, Senior Systems Engineer
jozef.vlaskamp@globalinkjetsystems.com

Debbie Thorp, Business Development Director
debbie.thorp@globalinkjetsystems.com

Global Inkjet Systems Limited
Edinburgh House
St John's Innovation Park
Cowley Road
Cambridge CB4 0DS
UK

Tel: +44 (0)1223 733 733
Web: www.globalinkjetsystems.com

Technical support offices in UK, Japan and China