Inkjet Printing – Flat and Container Glass

Debbie Thorp, Business Development Director

Glassprint Conference
November 2015
Global Inkjet Systems

- Electronics, firmware, drivers, RIPs, software utilities, user interfaces and components for ink delivery systems. Our customers are primarily machine builders and integrators.
Agenda

• Introduction

• Flat glass
 • Advantages of and demands on inkjet
 • Latest developments

• Container glass
 • Understanding shapes
 • (Some of the) challenges for inkjet
 • Printing on different shapes
 • Enabling technologies
 • Next steps

Images from Dip Tech, Durst and Ferma, SMTD web sites
Industrial Inkjet Printheads

- Wide range of printheads available – different features & capabilities
 - Range of print widths/resolution/speed/drop sizes
 - Binary, greyscale
 - Ink capability
 - Recirculating ink flow
- Used in multiple different applications
 - Examples include - ceramic tile printing, laminates, textiles, labels, direct mail, 3D printing, coatings, varnishes, functional fluids (e.g. printed electronics), flat glass and direct to shape (plastics, metal & glass)
- XY scanning and single pass systems

<table>
<thead>
<tr>
<th>Fujifilm Dimatix</th>
<th>Konica Minolta</th>
<th>Kyocera</th>
<th>Panasonic</th>
<th>Ricoh</th>
<th>SII</th>
<th>Toshiba Tec</th>
<th>Xaar</th>
</tr>
</thead>
</table>

4
Scanning vs. Single Pass

- **Scanning**
 - Safe and reliable
 - Errors recoverable
 - Typically lower productivity

- **Single pass**
 - No room for error
 - Defects highly visible
 - Missing nozzles
 - Jet straightness
 - Consistent jet velocity
 - High productivity
 - Reliability critical
Single Pass – Multiple Heads – Industrial Applications

- **Wide single pass inkjet** – e.g. ceramics, textiles and laminates
 - Multiple bars of printheads
 - Multiple colours
 - >100 printheads per system
 - High duty cycle environments
 - Reliability and up-time critical

- **Inkjet proven technology**
 - But can it meet the needs of the glass industry....
Flat Glass
Inkjet and Flat Glass

• Advantages
 • No screens – no storage – faster turnaround
 • Economic short runs
 • Variable data
 • Process colour printing without interim processing steps

• Vitrum news
 • Tecglass - new carriage configuration printing 1m² of a single colour design in 30 sec: multicolour design in 50 sec: graphic design in 150 sec
 • Durst - new transport suction cap system – high precision registration: surface sensors – precision positioning of round shaped glass
Demand for Glass Decoration – Flat Glass

What product areas offer the most potential for growth in 2015?*

<table>
<thead>
<tr>
<th>Product Area</th>
<th>Growth Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decorative glass</td>
<td>73%</td>
</tr>
<tr>
<td>Energy efficient glass</td>
<td>65%</td>
</tr>
<tr>
<td>Protective glazing</td>
<td>45%</td>
</tr>
<tr>
<td>Dynamic glazing</td>
<td>10%</td>
</tr>
<tr>
<td>Solar</td>
<td>8%</td>
</tr>
<tr>
<td>Other**</td>
<td>15%</td>
</tr>
</tbody>
</table>

“For the second consecutive year, fabricators reported that the decorative glass segment offered the most growth potential. Architects and designers increasingly demand all-glass, jumbo and custom glass for their projects, driving the decorative market.”

Source: Glass Magazine February 2015
Inkjet Adding Functionality

• By changing the density of patterns printed into the glass, architects can control how much natural light enters a specific room and how much solar heat gain typically occurs during the daylight hours in a site-specific location
 • November 2015 Dip-Tech launched Dip-Energy
 • Offers a printed glass performance calculator - quickly evaluates the energy performance of glass printed with Dip-Tech ceramic inks - measures the impact various designs will have on the Solar Heat Gain Coefficient and the percentage of visible light (%T) of the glass
Inkjet Printing onto Containers – Plastic/Metal

• Machines are now installed and in production
• A selection....

• Will we see the same for glass?
Container Glass - Different Shapes

<table>
<thead>
<tr>
<th>Flat</th>
<th>Cylinder</th>
<th>Conical</th>
<th>Bottles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Continuity of curvature in direction of print**
- **“Continuous” shapes** – curvature remains constant in direction of print
 - Cylinder, cone (mixed resolution, but still continuous), bottles etc
- **“Discontinuous” shapes** – curvature changes
 - Bottles (mixture of flat edges and curved corners and conical shapes)
 - Correction required keeps changing
 - Discontinuity across the printhead – adds considerable complexity

Source of images: internet images – none are known to be inkjet printed
Unfolding or “Flattening” Shapes

• Allows us to understand the complexities of printing onto that surface
 • Cylinders
 • Slice a cylinder down one side – unfolds/flattens to a simple rectangle
 • Cones
 • Cones unfold into “arced” rectangle
 • Tubs
 • Tubs are combinations of cones and cylinders with discontinuities
Some of the Challenges for Inkjet

- **Inks are critical**
- **Inkjet printheads**
 - Designed to print onto flat surfaces
 - Throw distance
 - Drops only jet a few millimetres and decelerate quickly
 - Larger drops jet further
 - Smaller drops improve graphical image quality
 - Distance between nozzle banks
 - Time of flight on curved surfaces
 - Printhead dimensions
 - Reaching the nooks & crannies
- **Need to manage physical characteristics of printhead in relation to curved surface**
 - Time of flight
 - Distance between nozzle banks
 - Image compensation – where applicable
Printhead Orientation

• **Orientation of the object under the printhead to get best possible print**

• **Three key issues**
 • Symmetry
 • Nozzle bank width
 • The narrower the better
 • Number of columns
 • Different times of flights
 • More complex

• **Printhead orientation**
 • Printing downwards
 • Printing sideways “skyscraper mode” (printhead dependent)
Printing onto Cylinders

- A “flat” image wrapped around a cylinder
 - No image compensation required
- Physical characteristics of the printhead
 - Geometry
 - Drop ejection
 - Time of flight
Printing Onto Bottles

• Huge range of shapes
• Printing more of the bottle presents new challenges as often different corrections required
 • Often combination of cylinder (main body of the bottle) & cones (neck)
 • Some have discontinuous shapes e.g. a tub-shaped base, ridges
Printing onto Different Shapes of Bottles

• Printing on cylinder section only

• Simplistic approach shown here
 • Print quality will vary where drop throw distance is further

Lower quality print area
Creating Wider Images

- **Decoration** – typically wider than one printhead print swathe
- **Stitches can massively improve output quality**
 - Stitched printheads do not all jet in the same place at the same time
 - Some will be printing wet on dry while others will print wet on/near wet
 - Software tools can help improve print quality

One head – wet on dry curing – lower throughput

Two heads – wet on wet printing – higher throughput

2-D Density

X & Y Dither
Full Product Height Printing

- **Cylinders**
 - Large area coverage well demonstrated

- **Conical shapes**
 - Most images are one head height and/or cover only a section of the cone requiring only minor distortion correction
 - Full height printing opens up new markets for full product decoration
Printing onto Conical Shapes

Continuous shape, but more complicated than a cylinder

• Nozzle alignment issues (as with cylinders)
• Resolution changes when printing onto curved surfaces
• Need to compensate for density increase
• Screening more complex
Printing onto Conical Shapes

- **Challenges**
 - Mechanical alignment of heads
 - Density & screening correction
 - Jetting angle variations
 - Stitching multiple heads—additional complexity
 - Software adjustment to support array of multiple printheads

- **Issues**
 - Nozzle misalignment
 - Time of flight differences
 - Increasing density
 - Screening issue - changes in dot gain

- **Images**
 - Image printed without correction
Printing onto Conical Shapes

- Technology exists
 - Correct nozzle alignment
 - Density correction
 - No dot gain issues
 - No screening artefacts

- More complex shapes also possible
 - Mixture of flat and curved surfaces
 - Required corrections change during the print (often from pixel to pixel)
 - Multi-dimensional nozzle, density and screener correction technology
 - Can be adjusted to each surface type and associated application process
Summary – Technology Enablers

• Inks/printheads
 • Drop size/ resolution/ print quality
 • Ink recirculation
 • Adhesion/process issues – ink chemistry critical
 • Recyclability
 • Reliability

• Supporting technologies
 • Pre-treatment/ curing/ post-treatment

• New processes – new market opportunities
 • Software tools – more shapes

• Synergy of inkjet with analogue print – hybrid devices

• Production systems
 • Must meet industry demands (on many levels)
 • Find applications where digital argument is compelling
 • Create new market opportunities

Images from Tecglass, Dip Tech & Fermac web sites
Inkjet Container Glass

There will be more....
Thank you – Any Questions?

Nick Geddes, CEO
nick.geddes@globalinkjetsystems.com
Debbie Thorp, Business Development Director
debbie.thorp@globalinkjetsystems.com

Global Inkjet Systems Limited
The Jeffreys Building
Cowley Road
Cambridge CB4 0DS
Tel: +44 (0)1223 733 733
Web: www.globalinkjetsystems.com